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The problem of estimating the thickness and the optical constants of thin films
using transmission data only is very challenging from the mathematical point of view
and has a technological and an economic importance. In many cases it represents a
very ill-conditioned inverse problem with many local-nonglobal solutions. In a recent
publication we proposed nonlinear programming models for solving this problem.
Well-known software for linearly constrained optimization was used with success for
this purpose. In this paper we introduce an unconstrained formulation of the nonlinear
programming model and we solve the estimation problem using a method based
on repeated calls to a recently introduced unconstrained minimization algorithm.
Numerical experiments on computer-generated films show that the new procedure is
reliable. c© 1999 Academic Press
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1. INTRODUCTION

For most modern applications of thin dielectric or semiconductor films, the optical prop-
erties of interest cover a photon energy range around the fundamental absorption edge of
the material. Moreover, as the applications make use of multiple coherent reflections at the
interfaces, the thickness of the films is an important design and characterization param-
eter. Optical transmittance provides accurate and rapid information on the spectral range
where the material goes from complete opacity to some degree of transparency [1, 2]. As a
consequence, the problem of retrieving the optical constants(ñ(λ)= n(λ)+ i κ(λ)) and the
thickness(d) of thin films, from transmission data only, is of particular importance. Some
useful approximate solutions have been found in cases where the transmittance displays an
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interference pattern in a highly transparent spectral region [3–5]. Up to now, however, the
general solution of the problem has been elusive, because the system of equations is highly
undetermined. Recently, we reported a new method, based on a pointwise constrained op-
timization approach, which allows us to solve the general case [6, 7]. The method defines
a nonlinear programming problem, the unknowns of which are the coefficients to be esti-
mated, with linear constraints that represent prior knowledge about the physical solution.
The retrieval of the correct thickness and optical constants of the films does not rely on the
existence of interference fringes. The new method was successful in retrievingd andñ(λ)
from very different transmission spectra of computer made and real world films [6, 7]. The
main inconvenience of the pointwise constrained optimization approach [6, 7] is that it is
a rather complex large-scale linearly constrained nonlinear programming problem whose
solution can be obtained only by means of sophisticated and not always available computer
codes that can deal effectively with the sparsity of the matrix of constraints [8, 9].

We consider then the problem of estimating the absorption coefficient, the refractive index
and the thickness of thin films, using transmission data only. Given the wavelengthλ, the
refractive index of the substrates, and the unknownsd (thickness),n(λ) (refractive index),
andκ(λ) (attenuation coefficient), the theoretical transmission is given by a well-known
formula [2, 4, 5]. Having measurements of the transmission at (many) different wavelengths
we want to estimate the above mentioned unknowns. At a first glance, this problem is highly
undetermined since, for each wavelength, the single equation

theoretical transmission= measured transmission (1)

has three unknownsd, n(λ), κ(λ) and onlyd is repeated for all values ofλ. The driving
idea in [6, 7] was to incorporate prior knowledge on the functionsn(λ) andκ(λ) in order
to decrease the degrees of freedom of (1) up to a point that only physically meaningful
estimated parameters are admitted.

The idea of assuming a closed formula forn andκ depending on few coefficients has
already been reported [3–5]. The methods originated from this idea are efficient when the
transmission curve exhibits a fringe pattern representing rather large spectral zones were
κ(λ) is almost null. In other cases, the satisfaction of (1) is very rough or the curvesn(λ)
andκ(λ) are physically unacceptable.

In [6, 7], instead of imposing a functional form ton(λ) andκ(λ), the phenomenological
constraints that restrict the variability of these functions were stated explicitly so that the
estimation problem took the form:

minimize
∑
λ

[theoretical transmission(λ)−measured transmission(λ)]2 (2)

subject toPhysical Constraints.

In this way, well behaved functionsn(λ)andκ(λ) can be obtained without severe restrictions
that may damage the quality of the fitting (1).

The main contribution of the present paper is to establish a method for solving the
estimation problem where (2) is replaced by an unconstrained optimization problem. We
solved this problem using a very simple algorithm introduced recently by Raydan [10]. This
method realizes a very effective idea for potentially large-scale unconstrained minimization.
It consists of using only gradient directions with steplengths that ensure rapid convergence.
The reduction of (2) to an unconstrained minimization problem needed the calculation
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of very complicated derivatives of functions, which could not be possible without the
use of automatic differentiation techniques. Here we used the procedures for automatic
differentiation described in [11].

2. UNCONSTRAINED FORMULATION OF THE ESTIMATION PROBLEM

The transmissionT of a thin absorbing film deposited on a thick transparent substrate
(see [4, 5]) is given by

T = Ax
B− Cx+ Dx2

, (3)

where

A = 16s(n2+ κ2), (4)

B = [(n+ 1)2+ κ2][(n+ 1)(n+ s2)+ κ2], (5)

C = [(n2− 1+ κ2)(n2− s2+ κ2)− 2κ2(s2+ 1)]2 cosϕ

− κ[2(n2− s2+ κ2)+ (s2+ 1)(n2− 1+ κ2)]2 sinϕ, (6)

D = [(n− 1)2+ κ2][(n− 1)(n− s2)+ κ2], (7)

ϕ = 4πnd/λ, x = exp(−αd), α = 4πκ/λ. (8)

In formulae (4)–(8) the following notation is used:

(a) λ is the wavelength;
(b) s= s(λ) is the refractive index of the transparent substrate (assumed to be known);
(c) n= n(λ) is the refractive index of the film;
(d) κ = κ(λ) is the attenuation coefficient of the film (α is the absorption coefficient);
(e) d is the thickness of the film.

A set of experimental data(λi , Tmeas(λi )), λmin≤ λi <λi+1≤ λmax, for i = 1, . . . , N, is
given, and we want to estimated, n(λ), andκ(λ). This problem seems highly underdeter-
mined. In fact, for knownd and givenλ, the following equation must hold:

T(λ, s(λ), d, n(λ), κ(λ)) = Tmeas(λ). (9)

This equation has two unknownsn(λ) andκ(λ) and, therefore, in general, its set of solutions
is a curve in the two-dimensional(n(λ), κ(λ)) space. Therefore, the set of functions(n, κ)
that satisfy (9) for a givend is infinite and, roughly speaking, is represented by a nonlinear
manifold of dimensionN in R2N .

However, physical constraints reduce drastically the range of variability of the unknowns
n(λ), κ(λ). For example, in the neighborhood of the fundamental absorption edge (normal
dispersion), these physical constraints are:

PC1. n(λ)≥ 1 andκ(λ)≥ 0 for all λ∈ [λmin, λmax];
PC2. n(λ) andκ(λ) are decreasing functions ofλ;
PC3. n(λ) is convex;
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PC4. There existsλin fl ∈ [λmin, λmax] such thatκ(λ) is convex ifλ≥ λin fl and concave
if λ<λin fl.

Observe that, assumingPC2, PC1 is satisfied under the sole assumptionn(λmax)≥ 1 and
κ(λmax)≥ 0. The constraintsPC2, PC3, andPC4can be written, respectively, as

n′(λ) ≤ 0 andκ ′(λ) ≤ 0 for all λ ∈ [λmin, λmax], (10)

n′′(λ) ≥ 0 for all λ ∈ [λmin, λmax], (11)

κ ′′(λ) ≤ 0 for all λ ∈ [λmin, λin fl], (12)

and

κ ′′(λ) ≥ 0 for all λ ∈ [λin fl, λmax]. (13)

Clearly, the constraints

n′′(λ) ≥ 0 for all λ ∈ [λmin, λmax] and n′(λmax) ≤ 0

imply that

n′(λ) ≤ 0 for all λ ∈ [λmin, λmax].

Moreover,

κ ′′(λ) ≥ 0 for all λ ∈ [λin fl, λmax] and κ ′(λmax) ≤ 0

imply that

κ ′(λ) ≤ 0 for all λ ∈ [λin fl, λmax].

Finally,

κ ′′(λ) ≤ 0 for all λ ∈ [λmin, λin fl] and κ ′(λmin) ≤ 0

imply that

κ ′(λ) ≤ 0 for all λ ∈ [λmin, λin fl].

Therefore,PC2can be replaced by

n′(λmax) ≤ 0, κ ′(λmax) ≤ 0, and κ ′(λmin) ≤ 0. (14)

Summing up, the assumptionsPC1–PC4will be satisfied if, and only if,

n(λmax) ≥ 1, κ(λmax) ≥ 0, (15)

n′(λmax) ≤ 0, κ ′(λmax) ≤ 0, (16)

n′′(λ) ≥ 0, for all λ ∈ [λmin, λmax], (17)

κ ′′(λ) ≥ 0, for all λ ∈ [λin fl, λmax], (18)

κ ′′(λ) ≤ 0, for all λ ∈ [λmin, λin fl], (19)



866 BIRGIN, CHAMBOULEYRON, AND MARTÍNEZ

and

κ ′(λmin) ≤ 0. (20)

So, the continuous least squares solution of the estimation problem is the solution(d, n(λ),
κ(λ)) of

minimize
∫ λmax

λmin

|T(λ, s(λ), d, n(λ), κ(λ))− Tmeas(λ)|2 dλ (21)

subject to the constraints (15)–(20).
Our idea in this work is to eliminate, as far as possible, the constraints of the problem, by

means of a suitable change of variables. Roughly speaking, we are going to put the objective
function (21) as depending on the second derivatives ofn(λ) andκ(λ) plus functional values
and first derivatives atλmax. Moreover, positivity will be guaranteed expressing the variables
as squares of auxiliary unknowns. In fact, we write

n(λmax) = 1+ u2, κ(λmax) = v2, (22)

n′(λmax) = −u2
1, κ ′(λmax) = − v2

1, (23)

n′′(λ) = w(λ)2 for all λ ∈ [λmin, λmax], (24)

κ ′′(λ) = z(λ)2 for all λ ∈ [λin fl, λmax], (25)

and

κ ′′(λ) = − z(λ)2 for all λ ∈ [λmin, λin fl]. (26)

At this point, in order to avoid a rather pedantic continuous formulation of the problem,
we consider the real-life situation, in which data are given by a set ofN equally spaced
points on the interval [λmin, λmax]. So, we define

h = (λmax− λmin)/(N − 1),

and

λi = λmin+ (i − 1)h for i = 1, . . . , N.

Consequently, the measured transmission atλi will be calledTmeas
i . Moreover, we will use

the notationni , κi , wi , andzi for the estimates ofn(λi ), κ(λi ), w(λi ), andz(λi ), for all
i = 1, . . . , N. The discretization of the differential relations (22)–(26) gives

nN = 1+ u2, vN = v2, (27)

nN−1 = nN + u2
1h, κN−1 = κN + v2

1h, (28)

ni = w2
i h2+ 2ni+1− ni+2 for i = 1, . . . , N − 2, (29)

κi = z2
i h2+ 2κi+1− κi+2, if λi+1 ≥ λin fl, (30)
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and

κi = − z2
i h2+ 2κi+1− κi+2, if λi+1 < λin fl. (31)

Finally, the objective function (21) is approximated by a sum of squares, giving the opti-
mization problem

minimize
N∑

i=1

[
T(λi , s(λi ), d, ni , κi )− Tmeas

i

]2
(32)

subject to

κ1 ≥ κ2. (33)

Sinceni andκi depend onu, u1, v, v1, w, z, andλin fl through (27)–(31), problem (32) takes
the form

minimize f (d, λin fl, u, u1, v, v1, w1, . . . , wN−2, z1, . . . , zN−2) (34)

subject to (33).
We expect that the constraint (33) will be inactive at a solution of (34)–(33), so we are

going to consider the unconstrained problem (34). The constraint (33) can also be explic-
itly considered in the numerical procedure, by adding a penalty termρmax{0, κ2 − κ1}2.
Although our code is prepared to do that, this was never necessary in the experiments.
The unknows that appear in (34) have a different nature. The thicknessd is a dimensional
variable (measured in nanometers in our problems) that can be determined using the obser-
vationsTmeas

i for (say)λi ≥ λbound, whereλbound, an upper bound forλin fl, reflects our prior
knowledge of the problem. For this reason, our first step in the estimation procedure will
be to estimated using data that correspond toλi ≥ λbound. For accomplishing this objective
we solve the problem

minimize f̄ (u, u1, v, v1, w, z) ≡
∑

λi≥λbound

[
T(λi , s(λi ), d, ni , κi )− Tmeas

i

]2
(35)

for different values ofd and we take as estimated thickness the one that gives the lowest
functional value. In this case the constraint (33) is irrelevant since it is automatically satisfied
by the convexity ofκ and the fact that the derivative ofκ atλmin is nonpositive. From now
on we consider thatd is fixed, coming from the procedure above.

The second step consists of determiningλin fl, together with the unknownsu, u1, v, v1,

w, z. For this purpose observe that, givend andλin fl, the problem

minimize
N∑

i=1

[
T(λi , s(λi ), d, ni , κi )− Tmeas

i

]2
(36)

is (neglecting (33)) an unconstrained minimization problem whose variables areu, u1, v, v1,

w, andz (2N variables). We solve this problem for several trial values ofλin fl and we take as
estimates ofn andκ the combination of variables that gives the lowest value. For minimizing
this function and for solving (35) for different trial thickness, we use the unconstrained
minimization solver that will be described in the next section.
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3. DESCRIPTION OF THE UNCONSTRAINED MINIMIZATION ALGORITHM

As we saw in the previous section, the unconstrained minimization problems (35) and
(36) have the form

minimize f (u, u1, v, v1, w1, . . . , wN−2, z1, . . . , zN−2). (37)

In order to simplify the notation, in this section we will write

x = (u, u1, v, v1, w1, . . . , wN−2, z1, . . . , zN−2).

Partial derivatives off are usually necessary in optimization algorithms, since they provide
the first-order information on the objective function that allows computational algorithms
to follow downhill trajectories. In this case, derivatives are very hard to compute. For this
reason it was necessary to use an automatic differentiation procedure (reverse mode) for
performing this task. See [11] for details.

In principle, any unconstrained optimization algorithm can be used to solve (37) (see [12,
13]). Since the problem has, potentially, a large number of variables, our choice must be
restricted to methods that are able to cope with that situation. A recent paper by Raydan [10]
induced us to use the spectral gradient method (SGM), an implementation of the Barzilai–
Borwein method for quadratics, introduced in [10]. In fact, Raydan showed, using a well
known set of classical test problems, that SGM outperforms conjugate gradient algorithms
(see [14, 13]) for large scale unconstrained optimization. Raydan’s spectral gradient method
is extremely easy to implement, a fact that contributed to support our decision, since it
enables us to become independent of black-box like imported software. Our description of
SGM here is, essentially, the one of Raydan with a small difference in the choice of the step
αk whenbk≤ 0.

We denoteg(x)=∇ f (x). The algorithm starts withx0∈Rn and uses an integerM ≥ 0, a
small parameterε >0, a sufficient decrease parameterγ ∈ (0, 1), and safeguarding param-
eters 0<σ1<σ2< 1. Initially, α0∈ [ε, 1/ε] is arbitrary. Givenxk ∈Rn, andαk ∈ [ε, 1/ε],
Algorithm 3.1 describes how to obtainxk+1 andαk+1, and when to terminate the process.

ALGORITHM 3.1.

Step 1. Detect whether the current point is stationary.
If ‖g(xk))‖=0, terminate the generation of the sequence, declaring thatxk is stationary.

Step 2. Backtracking.
Step 2.1. Setλ←αk.

Step 2.2. Setx+ = xk − λg(xk).
Step 2.3. If

f (x+) ≤ max
0≤ j≤min{k,M−1}

{ f (xk− j )} + γ 〈x+ − xk, g(xk)〉, (38)

then definexk+1= x+, sk= xk+1− xk, andyk= g(xk+1)− g(xk).
Else, define

λnew∈ [σ1λ, σ2λ], (39)

setλ← λnew, and go to Step 2.2.
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FIG. 1. Optical constants adopted for the simulation of thin films. See the corresponding analytical expressions
in the Appendix.

Step 3. Compute spectral steplength.
Computebk=〈sk, yk〉.
If bk≤ 0, setαk+1=αmax,
else, computeak=〈sk, sk〉, and

αk+1 = min{αmax,max{αmin,ak/bk}}.
In practice the computation ofλnew uses one-dimensional quardratic interpolation and it

is safeguarded with (39).

4. NUMERICAL RESULTS

In order to test the reliability of the new unconstrained optimization approach we used
the computer-generated transmission ofgedankenfilms deposited onto glass or crystalline
silicon substrates. The expressions ofsglass(λ) andsSi(λ), the refractive indices of the glass
and the silicon substrates, respectively, are shown in the Appendix.

In all the simulations, we assume that the wavelength and the thickness are measured
in nanometers. The transmissionTtrue(λ) for each film was first computed in the range
λ∈ [λmin, λmax] using a known thicknessdtrue, a known refractive indexntrue(λ), and a
known absorption coefficientαtrue(λ). In order to consider realistic situations, including
experimental inaccuracy, the true transmissionTtrue(λ) was rounded to four decimals. We
performed numerical experiments using 100 transmission points. The precision obtained in
d, n(λ), andα(E) rounding the transmission data to four decimal places after the decimal
point and without rounding was essentially the same.
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FIG. 2. “True” (dashed lines) and retrieved values (open circles) of the optical transmission, the refractive
index, and the absorption coefficient of a numerically generated thin film of thicknessd= 100 nm simulating an
a-Si:H layer deposited on glass (Film A). Note the good agreement found for the optical constants despite the
thinness of the film.

Three different materials, hydrogenated amorphous silicon (a-Si:H), hydrogenated amor-
phous germanium (a-Ge:H), and agedankenmetal oxide, were simulated. The numerical
experiments consider three thicknesses: 80, 100, and 600 nm. The trial films are “deposited”
on a glass or on a c-Si substrate. Note that the transmission formula (3) being used assumes
that the substrate is perfectly transparent. As a consequence of this limitation, the useful
spectral ranges 350–2000 nm for glass and 1250–2600 nm for c-Si substrates have been
retained in the numerical experiments. The expressions ofαtrue(E) andntrue(λ) used to
generate the transmission spectra are shown in the Appendix. Their dependence on photon
energy(E) and wavelength, respectively, are displayed in Fig. 1. The description of the five
gedankenexperiments and the retrieved numerical results follow.
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FIG. 3. Quadratic error of the minimization process as a function of trial thickness forFilm A. On the left side
the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is 1 nm. Note the
excellent retrieval of the film thickness after 5000 iterations.

Film A. This computer-generated film simulates an a-Si:H thin film deposited on a glass
substrate withdtrue= 100 nm. The computed transmissionTtrue(λ) in the 540–1530 nm
wavelength range, and the optical constantsntrue(λ) andαtrue(E) are shown as dashed lines
in Fig. 2. The retrieved values ofTtrue(λ), ntrue(λ), andαtrue(E) are represented in the
same figure as open circles. The retrieval of the film thickness is shown in Fig. 3. A few
comments are in order. First, the transmission spectrum does not show any fringe pattern in
the calculated spectral range, as expected for a 100-nm thin film. A well defined maximum
at approximatelyλ= 780 nm and no well defined minima are apparent from Fig. 2. In spite
of this, the “true” thickness is retrieved with a surprising precision. Second, within most
of the analyzed spectral rangentrue(λ) andnretr(λ) are in very good agreement. At short
wavelengths a small difference appears (of up to 0.05) betweenntrue(λ) and the retrieved
n(λ). Third, within a factor of two or three, the absorption coefficient is correctly retrieved
in a 3.5 orders of magnitude dynamical range. The retrieval of true values, however, fails for
α <500 cm−1. Remember that the simulation refers to a 100-nm thick film. We consider the
overall retrieval of the thickness and the optical constants to constitute an outstanding result.

Film B. This computer-generated film is identical toFilm A except for its thickness
dtrue= 600 nm. The transmission spectrum displays a well structured fringe pattern, as
shown in Fig. 4. The retrieved valuesTretr(λ), nretr(λ), andαretr(E) are also indicated in
Fig. 4 (open circles). Figure 5 shows the results of the minimization process for steps
of 10 nm and 1 nm. The true thickness has been perfectly retrieved. In fact, the overall
retrieval is almost perfect in this case. In particular, the absorption coefficient has been
correctly retrieved for a dynamical range of more than 5 orders of magnitude, down to
α≈ 1 cm−1. The results shown in Figs. 2 and 4 confirm the well known fact that the thicker
the film, the easier it is to retrieve a small absorption coefficient.

Film C. This computer-generated film simulates adtrue= 100 nm hydrogenated amor-
phous germanium thin film deposited on a crystalline silicon substrate. The computed
transmissionTtrue(λ), as well asntrue(λ) andαtrue(E), is shown as dashed lines in Fig. 6.
Tture(λ) has been calculated in the (relatively narrow) spectral region 1250–2537 nm where
c-Si is transparent. As in the case ofFilm A, there is not a well defined fringe pattern.
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FIG. 4. “True” (dashed lines) and retrieved values (open circles) of the transmission, the refractive index,
and the absorption coefficient of a numerically generated film of thicknessd= 600 nm simulating an a-Si:H layer
deposited on glass (Film B). Note the very good agreement found for the optical constants and the transmission.

However, two important differences betweenFilm A andFilm C have to be noted here:
(i) the index of refraction difference between film and substrate is much larger in the former
than in the latter case, and (ii) the spectral region computed forFilm C does not include
large absorption coefficient values. In other words,Film C is more “transparent” in the
wavelength range considered in the retrieval process. The transmission ofFilm C displays a
well defined minimum atλ≈ 1520 nm but a neighboring maximum does not appear in the
computed spectral range. The result of the film thickness retrieval process appears in Fig. 7.
In this case, the overall retrieval process is not as good as in the preceding cases. In particular
the retrieval of the absorption coefficient is poor. We believe this to be due to the thinness
of the film allied to the fact that the spectral region under consideration does not include
large absorption coefficients, i.e.,α >100 cm−1. This constitutes the worst imaginable
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FIG. 5. Quadratic error of the minimization process as a function of trial thickness forFilm B. On the left
side the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is 1 nm
(5000 iterations). Note the excellent retrieval of the film thickness and the local-nonglobal minimizers.

situation, a very thin non-absorbing film. In spite of this, the “true” thickness has been
retrieved (see Fig. 7), as well as the index of refraction (see Fig. 6). We conclude that the
algorithm under discussion fails to retrieve small absorption coefficients of very thin films
when the transmission spectrum contains data referring only to almost transparent regions.

Film D. This computer-generated film is identical toFilm C except for its thickness
dtrue= 600 nm. The transmission spectrum as well as the “true” and retrieved optical
constants are shown in Fig. 8. Figure 9 displays the results of the minimization process
leading to the “true” 600 nm thickness. Note that for this thicker a-Ge:H film deposited
onto c-Si the retrieval ofd andn(λ) is perfect (see Fig. 8), as well as the “true” absorption
coefficient down to 1 cm−1. However, the retrieval ofα fails for E< 0.7 eV. In the smallα
region of the spectrum, these findings mimic those obtained withFilm B (Fig. 4).

Film E. The last numerical example simulates a metal oxide film (dtrue= 80 nm) de-
posited onto glass. The computed transmission spectrum in the 360–657 nm wavelength
range used for the retrieval of the thickness and the optical constants of the material is
shown in Fig. 10. Figure 10 also displays the retrieved values ofn andα. The film thickness
was perfectly retrieved, as shown in Fig. 11. Let us note at this point the following: (i) the
film thinness and the similarn values of both film and substrate inhibit the appearance of
a fringe pattern, (ii) in spite of this fact the optical constants andd are very well retrieved,
and (iii) additional numerical experiments show that for 50< d< 75 nm thick films, the
present algorithm fails to retrieved, n, andα with a precision better than around 10%.

Table I summarizes the findings of all the reported numerical experiments. We finish this
section providing details of our numerical procedure.

For our calculations we need initial estimates ofκ(λ) andn(λ). As initial estimate ofκ(λ)
we used a piecewise linear function the values of which are 0.1 at the smallest wavelength of
the spectrum, 0.01 atλmin+ 0.2(λmax− λmin), and 10−10 atλmax. The initial estimates ofn(λ)
are linear functions varying between 5 (λmin)and 2 (λmax) with step 1 (these values were cho-
sen because of the previous knowledge of the simulated materials). We excluded the constant
functions because preliminary tests showed us they lead the method to local minimizers.
So, we have six possibilities for the initial estimate ofn(λ): the decreasing linear functions
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TABLE I

Thickness Estimation

Film Spectra dtrue dretr Quadratic error

A 540–1530 100 100 6.338394× 10−6

B 620–1610 600 600 2.425071× 10−5

C 1250–2537 100 100 6.094629× 10−8

D 1250–2537 600 600 6.353207× 10−8

E 360–657 80 80 5.085419× 10−7

FIG. 6. “True” (dashed lines) and retrieved values (open circles) of the transmission, the refractive index, and
the absorption coefficient of a numerically generatedd= 100 nm thick film simulating an a-Ge:H layer deposited
on a crystalline silicon substrate (Film C). Note that in the spectral region where the c-Si substrate is transparent
the a-Ge:H is weakly absorbing. A good retrieval is found for the index of refraction and for the transmission,
which does not display any fringe pattern. However, the algorithm failed (within an order of magnitude) to retrieve
the correct absorption coefficient in the 1<α<100 cm−1 interval.
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FIG. 7. Quadratic error of the minimization process as a function of trial thickness forFilm C. On the left
side the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is 1 nm
(5000 iterations). The “true” thickness of the film has been retrieved.

defined by the pairs of points [(λmin, 3); (λmax, 2)], [(λmin, 4); (λmax, 2)], [(λmin, 5);
(λmax, 2)], [(λmin, 4); (λmax, 3)], [(λmin, 5); (λmax, 3)], and [(λmin, 5); (λmax, 4)]. The re-
ported computedn(λ) corresponds to the best performance.

The general scheme to obtain the optimal parameters is as follows. First, we need to break
down the spectrum into two parts: [λmin, λbound] and [λbound, λmax], whereλboundis a known
upper bound ofλin fl. To estimate the thickness we use the points with abscissa belonging
to [λbound, λmax]. The procedure consists in running Algorithm 3.1 for different values of
d betweendmin= 1

2dkick anddmax= 3
2dkick with step 10, (dmin, dmin+ 10, dmin+ 20, . . .),

wheredkick is a rough initial estimate of the true thickness. In this way, we obtaindtrial , the
thickness value for which the smallest quadratic error occurs. Then we repeat the proce-
dure withdmin= dtrial − 10, dmax= dtrial + 10 and step 1 obtaining, finally, the estimated
thicknessdbest.

To estimate the inflection point we proceed in an analogous way, using the whole spectrum
and the thickness fixed atdbest, trying different possible inflection points (obviously between
λmin andλbound) and taking as the estimated inflection point the one which gives the smallest
quadratic error. In all the runs just described, we allow only 3000 and 5000 iterations of
Algorithm 3.1, when thedtrial step is equal to 10 and 1, respectively. The final step of the
method consists on fixingdbest andλin fl, and running Algorithm 3.1 once more allowing
50,000 iterations.

All the experiments were run in a SPARCstation Sun Ultra 1, with an UltraSPARC 64
bits processor, 167-MHz clock, and 128 MBytes of RAM memory. We used the language
C++ with the g++ compiler (GNU project C and C++ compiler v 2.7) and the optimization
compiler option−O4. In spite of the many executions of the unconstrained minimization
algorithm that are necessary to solve each problem, the total CPU time used under the
mentioned computer environment never exceeded 5 minutes.

5. CONCLUSIONS

The analysis of the numerical results allows us to draw the following conclusions.

1. The proposed procedure is highly reliable for estimating the true thickness in all
films when four digits transmission data are used. The method provides a very good retrieval
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FIG. 8. “True” and retrieved values of the transmission, the refractive index, and the absorption coefficient of
a numerically generated thin film of thicknessd= 600 nm simulating an a-Ge:H layer deposited on a crystalline
silicon substrate (Film D). Note the overall good agreement found for the optical constants and the transmission.
The retrieval of the “true” absorption coefficient for 1<α<100 cm−1 is excellent.

of the true transmission in cases where no approximate methods are useful, i.e., very thin
films (d> 75 nm) or absorbing layers.

2. The algorithm being discussed here fails to retrieve the true thickness and the
true absorption coefficient from the transmission spectrum of very thin transparent films.
Additional numerical experiments, not being discussed here, indicate a defective retrieval
of the thickness and the optical constants ofd< 75 nm thin films from optical transmission
data.

3. In some cases the quadratic error as a function of the guessed thickness (Fig. 5) is
a function with several local-nonglobal minimizers. The strategy of separating the variable
d from the other variables of the optimization problem appears to be correct, since it tends
to avoid spurious convergence to those local minimizers.
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FIG. 9. Quadratic error of the minimization process as a function of trial thickness forFilm D. On the left
side the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is 1 nm
(5000 iterations). Note the excellent retrieval of the film thickness and the local-nonglobal minimizers.

4. The comparison of the present results with those previously obtained using the
algorithm described in [5, 6] seems to confirm that the new method is, at least, as efficient as
the previous constrained optimization approach. In addition, the resulting piece of software
is more portable and easier to manipulate.

5. As one of the referees pointed out, further time reductions can be expected from
considering spectral preconditioning schemes (see [15]). This will be done in future works.

APPENDIX

Analytical expressions used to compute the substrates and the simulated optical constants
of semiconductor and dielectric films are

sglass(λ) =
√

1+ (0.7568− 7930/λ2)−1, (40)

sSi(λ) = 3.71382− 8.69123 10−5λ− 2.47125 10−8λ2+ 1.04677 10−11λ3. (41)

a-Si:H

Index of refraction,

ntrue(λ) =
√

1+ (0.09195− 12600/λ2)−1. (42)

Absorption coefficient,

ln(αtrue(E)) =


6.5944 10−6 exp(9.0846E)− 16.102, 0.60< E < 1.40;
20E − 41.9, 1.40< E < 1.75;
√

59.56E − 102.1− 8.391, 1.75< E < 2.29.

(43)

a-Ge:H

Index of refraction,

ntrue(λ) =
√

1+ (0.065− (15000/λ2)−1. (44)
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FIG. 10. “True” and retrieved values of the transmission, the refractive index, and the absorption coefficient
of a numerically generated thin film of thicknessd= 80 nm simulating a metal oxide layer deposited on glass
(Film E). The overall retrieval of the optical constants and the transmission is excellent. Note that (i) the transmission
spectrum does not contain any interference fringe pattern, and (ii) the “true” absorption coefficient has been
correctly retrieved for a four orders of magnitude dynamical range. However, the retrieval ofα fails for E<
2.45 eV.

Absorption coefficient,

ln(αtrue(E)) =


6.5944 10−6 exp(13.629E)− 16.102, 0.48< E < 0.93;
30E − 41.9, 0.93< E < 1.17;
√

89.34E − 102.1− 8.391, 1.17< E < 1.50.

(45)
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FIG. 11. Quadratic error of the minimization process as a function of trial thickness forFilm E. On the left
side the trial thickness step is 10 nm whereas on the right hand side of the figure the refined trial step is 1 nm
(5000 iterations). The “true” 80-nm thickness of the metal oxide layer was retrieved with no error.

Metal Oxide

Index of refraction,

ntrue(λ) =
√

1+ (0.3− (10000/λ2))−1. (46)

Absorption coefficient,

ln(αtrue(E)) = 6.5944 10−6 exp(4.0846E)− 11.02, 0.5< E < 3.5. (47)

In the expressions above, the wavelengthλ is in nm, the photon energyE= 1240/λ is in
eV, and the absorption coefficientα is in nm−1.
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